Toward Data-driven, Semi-automatic Inference of Phenomenological Physical Models: Application to Eastern Sahel Rainfall

نویسندگان

  • Saurabh V. Pendse
  • Isaac K. Tetteh
  • Fredrick H. M. Semazzi
  • Vipin Kumar
  • Nagiza F. Samatova
چکیده

First-principles based predictive understanding of complex, dynamic physical phenomena, such as regional precipitation or hurricane intensity and frequency, is quite limited due to the lack of complete phenomenological models underlying their physics. To address this gap, hypothesis-driven, manually-constructed, conceptual hurricane models and models for regional-scale precipitation extremes have been emerging. To complement both approaches, we propose a methodology for data-driven, semi-automatic inference of plausible phenomenological models and apply it to derive the model for eastern Sahel rainfall, an important factor for socioeconomic growth and development of this region. At its core, our methodology derives cause-effect relationships using the Lasso multivariate regression model and quantifies compound affect that the complex interplay among the key predictors at their prominent temporal phases plays on the response (rainfall). Specifically, we propose methods for (a) detecting and ranking predictors’ prominent temporal phases, (b) optimizing the regularization penalty, (c) assessing predictor statistical significance, (d) performing impact analysis of data normalization on model inference, and (e) calculating the Expected Causality Impact (ECI) score to quantify impact analysis. The culmination of this study is the plausible phenomenological model of the eastern Sahel seasonal rainfall and quantified key climate drivers involved in the rainfall variability at different time lags. To the best of our knowledge, this is the first phenomenological model of this phenomenon; several of its components are consistent with the known evidence from literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delayed Sahel rainfall and global seasonal cycle in a warmer climate

[1] Twenty-first century projections of global rainfall and sea surface temperature in the current generation of climate models indicate a delay in the seasonal cycle in response to increasing greenhouse gases, with important implications for the regional monsoons. In particular, the rainy season of the semi-arid African Sahel is projected to start later and become shorter. The robust agreement...

متن کامل

Including spatial distribution in a data-driven rainfall-runoff model to improve reservoir inflow forecasting in Taiwan

Multi-step ahead inflow forecasting has a critical role to play in reservoir operation and management in Taiwan during typhoons as statutory legislation requires a minimum of 3-h warning to be issued before any reservoir releases are made. However, the complex spatial and temporal heterogeneity of typhoon rainfall, coupled with a remote and mountainous physiographic context, makes the developme...

متن کامل

Application of Artificial Neural Network and Fuzzy Inference System in Prediction of Breaking Wave Characteristics

Wave height as well as water depth at the breaking point are two basic parameters which are necessary for studying coastal processes. In this study, the application of soft computing-based methods such as artificial neural network (ANN), fuzzy inference system (FIS), adaptive neuro fuzzy inference system (ANFIS) and semi-empirical models for prediction of these parameters are investigated. Th...

متن کامل

Forced Sahel rainfall trends in the CMIP5 archive

The simulations of the fifth Coupled Models Intercomparison Project (CMIP5) strengthen previous assessments of a substantial role of anthropogenic emissions in driving precipitation changes in the Sahel, the semi-arid region at the southern edge of the Sahara. Historical simulations can capture the magnitude of the centennial Sahel drying over the span of the 20th century and confirm that anthr...

متن کامل

Application of Grey System Theory in Rainfall Estimation

Considering the fact that Iran is situated in an arid and semi-arid region, rainfall prediction for the management of water resources is very important and necessary. Researchers have proposed various prediction methods that have been utilized in such areas as water and meteorology, especially water resources management. The present study aimed at predicting rainfall amounts using Grey Predicti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012